Joint Sensing Period and Transmission Time Optimization for Energy-Constrained Cognitive Radios

نویسندگان

  • You Xu
  • Yin Sun
  • Yunzhou Li
  • Yifei Zhao
  • Hongxing Zou
چکیده

Under interference constraint and energy consumption constraint, to maximize the channel utilization, an opportunistic spectrum access (OSA) strategy for a slotted secondary user (SU) overlaying an unslotted ON/OFF continuous time Markov chain (CTMC) modeled primary network is proposed. The OSA strategy is investigated via a cross-layer optimization approach, with joint consideration of sensing period (related to PHY layer) and transmission time (related to MAC layer), which will affect both interference and energy consumption. Two access policies are investigated in this paper; that is, SU transmits only in “OFF slots” (i.e., the slots that the sensing results are OFF) and transmits in both “OFF slots” and “ON slots”. The allocation of sensing period and transmission time for two access policies is investigated and analyzed by means of geometric methods. The closed form solutions are derived, which show that SU should transmit in “OFF slots” as much as possible, and that the proposed OSA strategy has low computational cost. Numerical results also show that with the proposed policies, SU can efficiently access the channel and meanwhile consume less energy and time to sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Analysis of Random Periodic Spectrum Sensing for Cognitive Radio Networks

A random periodic spectrum sensing scheme is proposed for cognitive radio networks. The sensing period, the transmission time for primary users and cognitive radios are extended to general forms as random variables. A generalized Markov analytical model for sensing period optimization is presented, and the applications of the proposed analytical model by using examples involving primary user sy...

متن کامل

Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks

The detection reliability of a cognitive radio network improves by employing a cooperative spectrum sensing scheme. However, increasing the number of cognitive radios entails a growth in the cooperation overhead of the system. Such an overhead leads to a throughput degradation of the cognitive radio network. Since current cognitive radio networks consist of low-power radios, the energy consumpt...

متن کامل

Multi-channel sensing and resource allocation in energy constrained cognitive radio networks

We consider a cognitive radio network in a multi-channel licensed environment. Secondary user transmits in a channel if the channel is sensed to be vacant. This results in a tradeoff between sensing time and transmission time. When secondary users are energy constrained, energy available for transmission is less if more energy is used in sensing. This gives rise to an energy tradeoff. For multi...

متن کامل

Joint Optimization of Sensing Time and Fusion Rules for Cognitive Radios

In Cognitive Radios, sensing-time and fusion rules affect the performance of spectrum sensing when cooperative sensing is applied. Besides, the more unlicensed users are involved in cooperative sensing, the higher spectrum utilization the channel can achieve, while from the unlicensed users’ perspective, the lower average throughput the unlicensed users can obtain. In this paper, we explore the...

متن کامل

Joint Resource Allocation of Spectrum Sensing and Energy Harvesting in an Energy-Harvesting-Based Cognitive Sensor Network

The cognitive sensor (CS) can transmit data to the control center in the same spectrum that is licensed to the primary user (PU) when the absence of the PU is detected by spectrum sensing. However, the battery energy of the CS is limited due to its small size, deployment in atrocious environments and long-term working. In this paper, an energy-harvesting-based CS is described, which senses the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010